Data Manipulation

Code for Quiz 5 More practice with dplyr functions.

  1. Load R packages we will use.
  1. Read the data om the file, drug_cos.csv in to R and assign it too drug_cos.
drug_cos <- read.csv("https://estanny.com/static/week5/drug_cos.csv")
  1. Use glimpse() to get a glimpse of your data
glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year         <int> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
  1. Use distinct() to subset distinct rows.
drug_cos %>% 
  distinct(year)
  year
1 2011
2 2012
3 2013
4 2014
5 2015
6 2016
7 2017
8 2018
  1. Use count() to count observations by group.
drug_cos %>% 
  count(year)
  year  n
1 2011 13
2 2012 13
3 2013 13
4 2014 13
5 2015 13
6 2016 13
7 2017 13
8 2018 13
drug_cos %>% 
  count(name)
                      name n
1               AbbVie Inc 8
2             Allergan plc 8
3                Amgen Inc 8
4               Biogen Inc 8
5  Bristol Myers Squibb Co 8
6           ELI LILLY & Co 8
7      Gilead Sciences Inc 8
8        Johnson & Johnson 8
9           Merck & Co Inc 8
10                Mylan NV 8
11          PERRIGO Co plc 8
12              Pfizer Inc 8
13              Zoetis Inc 8
drug_cos %>% 
  count(ticker,name)
   ticker                    name n
1    ABBV              AbbVie Inc 8
2     AGN            Allergan plc 8
3    AMGN               Amgen Inc 8
4    BIIB              Biogen Inc 8
5     BMY Bristol Myers Squibb Co 8
6    GILD     Gilead Sciences Inc 8
7     JNJ       Johnson & Johnson 8
8     LLY          ELI LILLY & Co 8
9     MRK          Merck & Co Inc 8
10    MYL                Mylan NV 8
11    PFE              Pfizer Inc 8
12   PRGO          PERRIGO Co plc 8
13    ZTS              Zoetis Inc 8

Use filter() to extract rows that meet criteria

  1. Extract rows in non-consecutive years
drug_cos %>% 
  filter(year %in% c(2013, 2018))
   ticker                    name             location ebitdamargin
1     ZTS              Zoetis Inc    New Jersey; U.S.A        0.222
2     ZTS              Zoetis Inc    New Jersey; U.S.A        0.379
3    PRGO          PERRIGO Co plc              Ireland        0.236
4    PRGO          PERRIGO Co plc              Ireland        0.178
5     PFE              Pfizer Inc      New York; U.S.A        0.634
6     PFE              Pfizer Inc      New York; U.S.A        0.340
7     MYL                Mylan NV       United Kingdom        0.228
8     MYL                Mylan NV       United Kingdom        0.258
9     MRK          Merck & Co Inc    New Jersey; U.S.A        0.282
10    MRK          Merck & Co Inc    New Jersey; U.S.A        0.313
11    LLY          ELI LILLY & Co       Indiana; U.S.A        0.317
12    LLY          ELI LILLY & Co       Indiana; U.S.A        0.220
13    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.281
14    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.318
15   GILD     Gilead Sciences Inc    California; U.S.A        0.435
16   GILD     Gilead Sciences Inc    California; U.S.A        0.465
17    BMY Bristol Myers Squibb Co      New York; U.S.A        0.222
18    BMY Bristol Myers Squibb Co      New York; U.S.A        0.292
19   BIIB              Biogen Inc Massachusetts; U.S.A        0.432
20   BIIB              Biogen Inc Massachusetts; U.S.A        0.511
21   AMGN               Amgen Inc    California; U.S.A        0.405
22   AMGN               Amgen Inc    California; U.S.A        0.543
23    AGN            Allergan plc              Ireland        0.146
24    AGN            Allergan plc              Ireland        0.050
25   ABBV              AbbVie Inc      Illinois; U.S.A        0.346
26   ABBV              AbbVie Inc      Illinois; U.S.A        0.247
   grossmargin netmargin    ros    roe year
1        0.634     0.111  0.176  0.612 2013
2        0.672     0.245  0.326  0.694 2018
3        0.362     0.125  0.190  0.205 2013
4        0.387     0.028  0.088  0.022 2018
5        0.814     0.427  0.510  0.279 2013
6        0.790     0.208  0.221  0.162 2018
7        0.440     0.090  0.153  0.209 2013
8        0.350     0.031  0.074  0.028 2018
9        0.615     0.100  0.123  0.089 2013
10       0.681     0.147  0.206  0.199 2018
11       0.788     0.203  0.255  0.290 2013
12       0.738     0.132  0.155  0.264 2018
13       0.687     0.194  0.224  0.197 2013
14       0.668     0.188  0.233  0.244 2018
15       0.745     0.275  0.405  0.283 2013
16       0.781     0.247  0.401  0.252 2018
17       0.718     0.156  0.175  0.177 2013
18       0.710     0.218  0.263  0.373 2018
19       0.876     0.269  0.355  0.233 2013
20       0.865     0.329  0.435  0.334 2018
21       0.821     0.272  0.337  0.242 2013
22       0.827     0.353  0.461  0.585 2018
23       0.368    -0.288 -0.256 -0.147 2013
24       0.861    -0.326 -0.377 -0.074 2018
25       0.756     0.220  0.299  1.132 2013
26       0.764     0.174  0.194 -2.033 2018
  1. Extract every other year from 2012 to 2018
drug_cos %>% 
  filter(year %in% seq(2012, 2018, by = 2) )
   ticker                    name             location ebitdamargin
1     ZTS              Zoetis Inc    New Jersey; U.S.A        0.217
2     ZTS              Zoetis Inc    New Jersey; U.S.A        0.238
3     ZTS              Zoetis Inc    New Jersey; U.S.A        0.335
4     ZTS              Zoetis Inc    New Jersey; U.S.A        0.379
5    PRGO          PERRIGO Co plc              Ireland        0.226
6    PRGO          PERRIGO Co plc              Ireland        0.157
7    PRGO          PERRIGO Co plc              Ireland       -0.791
8    PRGO          PERRIGO Co plc              Ireland        0.178
9     PFE              Pfizer Inc      New York; U.S.A        0.447
10    PFE              Pfizer Inc      New York; U.S.A        0.359
11    PFE              Pfizer Inc      New York; U.S.A        0.267
12    PFE              Pfizer Inc      New York; U.S.A        0.340
13    MYL                Mylan NV       United Kingdom        0.244
14    MYL                Mylan NV       United Kingdom        0.242
15    MYL                Mylan NV       United Kingdom        0.190
16    MYL                Mylan NV       United Kingdom        0.258
17    MRK          Merck & Co Inc    New Jersey; U.S.A        0.330
18    MRK          Merck & Co Inc    New Jersey; U.S.A        0.567
19    MRK          Merck & Co Inc    New Jersey; U.S.A        0.254
20    MRK          Merck & Co Inc    New Jersey; U.S.A        0.313
21    LLY          ELI LILLY & Co       Indiana; U.S.A        0.304
22    LLY          ELI LILLY & Co       Indiana; U.S.A        0.223
23    LLY          ELI LILLY & Co       Indiana; U.S.A        0.230
24    LLY          ELI LILLY & Co       Indiana; U.S.A        0.220
25    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.272
26    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.336
27    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.338
28    JNJ       Johnson & Johnson    New Jersey; U.S.A        0.318
29   GILD     Gilead Sciences Inc    California; U.S.A        0.440
30   GILD     Gilead Sciences Inc    California; U.S.A        0.657
31   GILD     Gilead Sciences Inc    California; U.S.A        0.633
32   GILD     Gilead Sciences Inc    California; U.S.A        0.465
33    BMY Bristol Myers Squibb Co      New York; U.S.A        0.141
34    BMY Bristol Myers Squibb Co      New York; U.S.A        0.178
35    BMY Bristol Myers Squibb Co      New York; U.S.A        0.322
36    BMY Bristol Myers Squibb Co      New York; U.S.A        0.292
37   BIIB              Biogen Inc Massachusetts; U.S.A        0.402
38   BIIB              Biogen Inc Massachusetts; U.S.A        0.475
39   BIIB              Biogen Inc Massachusetts; U.S.A        0.491
40   BIIB              Biogen Inc Massachusetts; U.S.A        0.511
41   AMGN               Amgen Inc    California; U.S.A        0.414
42   AMGN               Amgen Inc    California; U.S.A        0.436
43   AMGN               Amgen Inc    California; U.S.A        0.545
44   AMGN               Amgen Inc    California; U.S.A        0.543
45    AGN            Allergan plc              Ireland        0.158
46    AGN            Allergan plc              Ireland        0.234
47    AGN            Allergan plc              Ireland        1.441
48    AGN            Allergan plc              Ireland        0.050
49   ABBV              AbbVie Inc      Illinois; U.S.A        0.379
50   ABBV              AbbVie Inc      Illinois; U.S.A        0.178
51   ABBV              AbbVie Inc      Illinois; U.S.A        0.392
52   ABBV              AbbVie Inc      Illinois; U.S.A        0.247
   grossmargin netmargin    ros    roe year
1        0.640     0.101  0.171  0.113 2012
2        0.641     0.122  0.195  0.465 2014
3        0.659     0.168  0.286  0.587 2016
4        0.672     0.245  0.326  0.694 2018
5        0.345     0.127  0.183  0.236 2012
6        0.371     0.059  0.104  0.033 2014
7        0.389    -0.760 -0.877 -0.498 2016
8        0.387     0.028  0.088  0.022 2018
9        0.820     0.267  0.307  0.179 2012
10       0.807     0.184  0.247  0.120 2014
11       0.767     0.137  0.158  0.116 2016
12       0.790     0.208  0.221  0.162 2018
13       0.428     0.094  0.163  0.184 2012
14       0.457     0.120  0.169  0.283 2014
15       0.424     0.043  0.052  0.044 2016
16       0.350     0.031  0.074  0.028 2018
17       0.652     0.130  0.182  0.113 2012
18       0.603     0.282  0.409  0.248 2014
19       0.648     0.098  0.117  0.092 2016
20       0.681     0.147  0.206  0.199 2018
21       0.788     0.181  0.239  0.273 2012
22       0.749     0.122  0.153  0.138 2014
23       0.731     0.129  0.159  0.185 2016
24       0.738     0.132  0.155  0.264 2018
25       0.678     0.161  0.218  0.173 2012
26       0.694     0.220  0.284  0.217 2014
27       0.697     0.230  0.286  0.229 2016
28       0.668     0.188  0.233  0.244 2018
29       0.745     0.267  0.411  0.312 2012
30       0.848     0.486  0.615  0.828 2014
31       0.860     0.444  0.595  0.835 2016
32       0.781     0.247  0.401  0.252 2018
33       0.738     0.111  0.102  0.131 2012
34       0.752     0.126  0.148  0.132 2014
35       0.744     0.229  0.302  0.292 2016
36       0.710     0.218  0.263  0.373 2018
37       0.901     0.250  0.335  0.211 2012
38       0.879     0.302  0.404  0.294 2014
39       0.871     0.323  0.431  0.322 2016
40       0.865     0.329  0.435  0.334 2018
41       0.815     0.252  0.351  0.225 2012
42       0.780     0.257  0.332  0.210 2014
43       0.819     0.336  0.453  0.259 2016
44       0.827     0.353  0.461  0.585 2018
45       0.426     0.016  0.060  0.026 2012
46       0.635    -0.349 -0.370 -0.085 2014
47       0.872     1.009  0.986  0.184 2016
48       0.861    -0.326 -0.377 -0.074 2018
49       0.755     0.287  0.316  0.690 2012
50       0.778     0.089  0.138  0.435 2014
51       0.773     0.232  0.345  1.113 2016
52       0.764     0.174  0.194 -2.033 2018
  1. Extract the tockers “PFE” and “MYL”
drug_cos %>% 
  filter(ticker %in% c("PFE", "MYL") )
   ticker       name        location ebitdamargin grossmargin
1     PFE Pfizer Inc New York; U.S.A        0.371       0.795
2     PFE Pfizer Inc New York; U.S.A        0.447       0.820
3     PFE Pfizer Inc New York; U.S.A        0.634       0.814
4     PFE Pfizer Inc New York; U.S.A        0.359       0.807
5     PFE Pfizer Inc New York; U.S.A        0.289       0.803
6     PFE Pfizer Inc New York; U.S.A        0.267       0.767
7     PFE Pfizer Inc New York; U.S.A        0.353       0.786
8     PFE Pfizer Inc New York; U.S.A        0.340       0.790
9     MYL   Mylan NV  United Kingdom        0.245       0.418
10    MYL   Mylan NV  United Kingdom        0.244       0.428
11    MYL   Mylan NV  United Kingdom        0.228       0.440
12    MYL   Mylan NV  United Kingdom        0.242       0.457
13    MYL   Mylan NV  United Kingdom        0.243       0.447
14    MYL   Mylan NV  United Kingdom        0.190       0.424
15    MYL   Mylan NV  United Kingdom        0.272       0.402
16    MYL   Mylan NV  United Kingdom        0.258       0.350
   netmargin   ros   roe year
1      0.164 0.223 0.114 2011
2      0.267 0.307 0.179 2012
3      0.427 0.510 0.279 2013
4      0.184 0.247 0.120 2014
5      0.142 0.183 0.105 2015
6      0.137 0.158 0.116 2016
7      0.406 0.233 0.342 2017
8      0.208 0.221 0.162 2018
9      0.088 0.161 0.146 2011
10     0.094 0.163 0.184 2012
11     0.090 0.153 0.209 2013
12     0.120 0.169 0.283 2014
13     0.090 0.133 0.089 2015
14     0.043 0.052 0.044 2016
15     0.058 0.121 0.054 2017
16     0.031 0.074 0.028 2018

Use select() to selectm rename and reorder columns

  1. Select columns ticker, name and ros
drug_cos %>% 
  select(ticker, name, ros)
    ticker                    name    ros
1      ZTS              Zoetis Inc  0.101
2      ZTS              Zoetis Inc  0.171
3      ZTS              Zoetis Inc  0.176
4      ZTS              Zoetis Inc  0.195
5      ZTS              Zoetis Inc  0.140
6      ZTS              Zoetis Inc  0.286
7      ZTS              Zoetis Inc  0.321
8      ZTS              Zoetis Inc  0.326
9     PRGO          PERRIGO Co plc  0.178
10    PRGO          PERRIGO Co plc  0.183
11    PRGO          PERRIGO Co plc  0.190
12    PRGO          PERRIGO Co plc  0.104
13    PRGO          PERRIGO Co plc  0.096
14    PRGO          PERRIGO Co plc -0.877
15    PRGO          PERRIGO Co plc  0.091
16    PRGO          PERRIGO Co plc  0.088
17     PFE              Pfizer Inc  0.223
18     PFE              Pfizer Inc  0.307
19     PFE              Pfizer Inc  0.510
20     PFE              Pfizer Inc  0.247
21     PFE              Pfizer Inc  0.183
22     PFE              Pfizer Inc  0.158
23     PFE              Pfizer Inc  0.233
24     PFE              Pfizer Inc  0.221
25     MYL                Mylan NV  0.161
26     MYL                Mylan NV  0.163
27     MYL                Mylan NV  0.153
28     MYL                Mylan NV  0.169
29     MYL                Mylan NV  0.133
30     MYL                Mylan NV  0.052
31     MYL                Mylan NV  0.121
32     MYL                Mylan NV  0.074
33     MRK          Merck & Co Inc  0.150
34     MRK          Merck & Co Inc  0.182
35     MRK          Merck & Co Inc  0.123
36     MRK          Merck & Co Inc  0.409
37     MRK          Merck & Co Inc  0.136
38     MRK          Merck & Co Inc  0.117
39     MRK          Merck & Co Inc  0.162
40     MRK          Merck & Co Inc  0.206
41     LLY          ELI LILLY & Co  0.220
42     LLY          ELI LILLY & Co  0.239
43     LLY          ELI LILLY & Co  0.255
44     LLY          ELI LILLY & Co  0.153
45     LLY          ELI LILLY & Co  0.140
46     LLY          ELI LILLY & Co  0.159
47     LLY          ELI LILLY & Co  0.096
48     LLY          ELI LILLY & Co  0.155
49     JNJ       Johnson & Johnson  0.199
50     JNJ       Johnson & Johnson  0.218
51     JNJ       Johnson & Johnson  0.224
52     JNJ       Johnson & Johnson  0.284
53     JNJ       Johnson & Johnson  0.282
54     JNJ       Johnson & Johnson  0.286
55     JNJ       Johnson & Johnson  0.243
56     JNJ       Johnson & Johnson  0.233
57    GILD     Gilead Sciences Inc  0.462
58    GILD     Gilead Sciences Inc  0.411
59    GILD     Gilead Sciences Inc  0.405
60    GILD     Gilead Sciences Inc  0.615
61    GILD     Gilead Sciences Inc  0.685
62    GILD     Gilead Sciences Inc  0.595
63    GILD     Gilead Sciences Inc  0.560
64    GILD     Gilead Sciences Inc  0.401
65     BMY Bristol Myers Squibb Co  0.256
66     BMY Bristol Myers Squibb Co  0.102
67     BMY Bristol Myers Squibb Co  0.175
68     BMY Bristol Myers Squibb Co  0.148
69     BMY Bristol Myers Squibb Co  0.121
70     BMY Bristol Myers Squibb Co  0.302
71     BMY Bristol Myers Squibb Co  0.249
72     BMY Bristol Myers Squibb Co  0.263
73    BIIB              Biogen Inc  0.333
74    BIIB              Biogen Inc  0.335
75    BIIB              Biogen Inc  0.355
76    BIIB              Biogen Inc  0.404
77    BIIB              Biogen Inc  0.437
78    BIIB              Biogen Inc  0.431
79    BIIB              Biogen Inc  0.407
80    BIIB              Biogen Inc  0.435
81    AMGN               Amgen Inc  0.305
82    AMGN               Amgen Inc  0.351
83    AMGN               Amgen Inc  0.337
84    AMGN               Amgen Inc  0.332
85    AMGN               Amgen Inc  0.419
86    AMGN               Amgen Inc  0.453
87    AMGN               Amgen Inc  0.477
88    AMGN               Amgen Inc  0.461
89     AGN            Allergan plc  0.115
90     AGN            Allergan plc  0.060
91     AGN            Allergan plc -0.256
92     AGN            Allergan plc -0.370
93     AGN            Allergan plc  0.276
94     AGN            Allergan plc  0.986
95     AGN            Allergan plc -0.609
96     AGN            Allergan plc -0.377
97    ABBV              AbbVie Inc  0.209
98    ABBV              AbbVie Inc  0.316
99    ABBV              AbbVie Inc  0.299
100   ABBV              AbbVie Inc  0.138
101   ABBV              AbbVie Inc  0.321
102   ABBV              AbbVie Inc  0.345
103   ABBV              AbbVie Inc  0.309
104   ABBV              AbbVie Inc  0.194
  1. Use select to exclude columns ticker, name and ros
drug_cos %>% 
  select(-ticker, -name, -ros)
                location ebitdamargin grossmargin netmargin    roe
1      New Jersey; U.S.A        0.149       0.610     0.058  0.069
2      New Jersey; U.S.A        0.217       0.640     0.101  0.113
3      New Jersey; U.S.A        0.222       0.634     0.111  0.612
4      New Jersey; U.S.A        0.238       0.641     0.122  0.465
5      New Jersey; U.S.A        0.182       0.635     0.071  0.285
6      New Jersey; U.S.A        0.335       0.659     0.168  0.587
7      New Jersey; U.S.A        0.366       0.666     0.163  0.488
8      New Jersey; U.S.A        0.379       0.672     0.245  0.694
9                Ireland        0.216       0.343     0.123  0.248
10               Ireland        0.226       0.345     0.127  0.236
11               Ireland        0.236       0.362     0.125  0.205
12               Ireland        0.157       0.371     0.059  0.033
13               Ireland        0.157       0.389     0.032  0.014
14               Ireland       -0.791       0.389    -0.760 -0.498
15               Ireland        0.181       0.400     0.024  0.020
16               Ireland        0.178       0.387     0.028  0.022
17       New York; U.S.A        0.371       0.795     0.164  0.114
18       New York; U.S.A        0.447       0.820     0.267  0.179
19       New York; U.S.A        0.634       0.814     0.427  0.279
20       New York; U.S.A        0.359       0.807     0.184  0.120
21       New York; U.S.A        0.289       0.803     0.142  0.105
22       New York; U.S.A        0.267       0.767     0.137  0.116
23       New York; U.S.A        0.353       0.786     0.406  0.342
24       New York; U.S.A        0.340       0.790     0.208  0.162
25        United Kingdom        0.245       0.418     0.088  0.146
26        United Kingdom        0.244       0.428     0.094  0.184
27        United Kingdom        0.228       0.440     0.090  0.209
28        United Kingdom        0.242       0.457     0.120  0.283
29        United Kingdom        0.243       0.447     0.090  0.089
30        United Kingdom        0.190       0.424     0.043  0.044
31        United Kingdom        0.272       0.402     0.058  0.054
32        United Kingdom        0.258       0.350     0.031  0.028
33     New Jersey; U.S.A        0.305       0.649     0.131  0.114
34     New Jersey; U.S.A        0.330       0.652     0.130  0.113
35     New Jersey; U.S.A        0.282       0.615     0.100  0.089
36     New Jersey; U.S.A        0.567       0.603     0.282  0.248
37     New Jersey; U.S.A        0.298       0.622     0.112  0.096
38     New Jersey; U.S.A        0.254       0.648     0.098  0.092
39     New Jersey; U.S.A        0.278       0.678     0.060  0.063
40     New Jersey; U.S.A        0.313       0.681     0.147  0.199
41        Indiana; U.S.A        0.277       0.791     0.179  0.306
42        Indiana; U.S.A        0.304       0.788     0.181  0.273
43        Indiana; U.S.A        0.317       0.788     0.203  0.290
44        Indiana; U.S.A        0.223       0.749     0.122  0.138
45        Indiana; U.S.A        0.211       0.748     0.121  0.162
46        Indiana; U.S.A        0.230       0.731     0.129  0.185
47        Indiana; U.S.A        0.165       0.731    -0.009 -0.015
48        Indiana; U.S.A        0.220       0.738     0.132  0.264
49     New Jersey; U.S.A        0.247       0.687     0.149  0.161
50     New Jersey; U.S.A        0.272       0.678     0.161  0.173
51     New Jersey; U.S.A        0.281       0.687     0.194  0.197
52     New Jersey; U.S.A        0.336       0.694     0.220  0.217
53     New Jersey; U.S.A        0.335       0.693     0.220  0.219
54     New Jersey; U.S.A        0.338       0.697     0.230  0.229
55     New Jersey; U.S.A        0.317       0.667     0.017  0.019
56     New Jersey; U.S.A        0.318       0.668     0.188  0.244
57     California; U.S.A        0.498       0.747     0.334  0.451
58     California; U.S.A        0.440       0.745     0.267  0.312
59     California; U.S.A        0.435       0.745     0.275  0.283
60     California; U.S.A        0.657       0.848     0.486  0.828
61     California; U.S.A        0.718       0.877     0.555  1.043
62     California; U.S.A        0.633       0.860     0.444  0.835
63     California; U.S.A        0.610       0.833     0.177  0.209
64     California; U.S.A        0.465       0.781     0.247  0.252
65       New York; U.S.A        0.285       0.736     0.175  0.229
66       New York; U.S.A        0.141       0.738     0.111  0.131
67       New York; U.S.A        0.222       0.718     0.156  0.177
68       New York; U.S.A        0.178       0.752     0.126  0.132
69       New York; U.S.A        0.144       0.764     0.095  0.104
70       New York; U.S.A        0.322       0.744     0.229  0.292
71       New York; U.S.A        0.286       0.707     0.048  0.072
72       New York; U.S.A        0.292       0.710     0.218  0.373
73  Massachusetts; U.S.A        0.404       0.908     0.245  0.204
74  Massachusetts; U.S.A        0.402       0.901     0.250  0.211
75  Massachusetts; U.S.A        0.432       0.876     0.269  0.233
76  Massachusetts; U.S.A        0.475       0.879     0.302  0.294
77  Massachusetts; U.S.A        0.493       0.885     0.330  0.321
78  Massachusetts; U.S.A        0.491       0.871     0.323  0.322
79  Massachusetts; U.S.A        0.495       0.867     0.207  0.209
80  Massachusetts; U.S.A        0.511       0.865     0.329  0.334
81     California; U.S.A        0.374       0.826     0.236  0.158
82     California; U.S.A        0.414       0.815     0.252  0.225
83     California; U.S.A        0.405       0.821     0.272  0.242
84     California; U.S.A        0.436       0.780     0.257  0.210
85     California; U.S.A        0.516       0.805     0.320  0.252
86     California; U.S.A        0.545       0.819     0.336  0.259
87     California; U.S.A        0.563       0.822     0.087  0.066
88     California; U.S.A        0.543       0.827     0.353  0.585
89               Ireland        0.213       0.440     0.057  0.075
90               Ireland        0.158       0.426     0.016  0.026
91               Ireland        0.146       0.368    -0.288 -0.147
92               Ireland        0.234       0.635    -0.349 -0.085
93               Ireland        0.749       0.783     0.290  0.050
94               Ireland        1.441       0.872     1.009  0.184
95               Ireland       -0.146       0.864    -0.276 -0.060
96               Ireland        0.050       0.861    -0.326 -0.074
97       Illinois; U.S.A        0.282       0.734     0.197  0.248
98       Illinois; U.S.A        0.379       0.755     0.287  0.690
99       Illinois; U.S.A        0.346       0.756     0.220  1.132
100      Illinois; U.S.A        0.178       0.778     0.089  0.435
101      Illinois; U.S.A        0.357       0.803     0.225  1.311
102      Illinois; U.S.A        0.392       0.773     0.232  1.113
103      Illinois; U.S.A        0.363       0.750     0.188  0.932
104      Illinois; U.S.A        0.247       0.764     0.174 -2.033
    year
1   2011
2   2012
3   2013
4   2014
5   2015
6   2016
7   2017
8   2018
9   2011
10  2012
11  2013
12  2014
13  2015
14  2016
15  2017
16  2018
17  2011
18  2012
19  2013
20  2014
21  2015
22  2016
23  2017
24  2018
25  2011
26  2012
27  2013
28  2014
29  2015
30  2016
31  2017
32  2018
33  2011
34  2012
35  2013
36  2014
37  2015
38  2016
39  2017
40  2018
41  2011
42  2012
43  2013
44  2014
45  2015
46  2016
47  2017
48  2018
49  2011
50  2012
51  2013
52  2014
53  2015
54  2016
55  2017
56  2018
57  2011
58  2012
59  2013
60  2014
61  2015
62  2016
63  2017
64  2018
65  2011
66  2012
67  2013
68  2014
69  2015
70  2016
71  2017
72  2018
73  2011
74  2012
75  2013
76  2014
77  2015
78  2016
79  2017
80  2018
81  2011
82  2012
83  2013
84  2014
85  2015
86  2016
87  2017
88  2018
89  2011
90  2012
91  2013
92  2014
93  2015
94  2016
95  2017
96  2018
97  2011
98  2012
99  2013
100 2014
101 2015
102 2016
103 2017
104 2018
  1. Rename and reorder columns with select
drug_cos %>% 
  select(year, ticker, headquarter = location, netmargin, roe)
    year ticker          headquarter netmargin    roe
1   2011    ZTS    New Jersey; U.S.A     0.058  0.069
2   2012    ZTS    New Jersey; U.S.A     0.101  0.113
3   2013    ZTS    New Jersey; U.S.A     0.111  0.612
4   2014    ZTS    New Jersey; U.S.A     0.122  0.465
5   2015    ZTS    New Jersey; U.S.A     0.071  0.285
6   2016    ZTS    New Jersey; U.S.A     0.168  0.587
7   2017    ZTS    New Jersey; U.S.A     0.163  0.488
8   2018    ZTS    New Jersey; U.S.A     0.245  0.694
9   2011   PRGO              Ireland     0.123  0.248
10  2012   PRGO              Ireland     0.127  0.236
11  2013   PRGO              Ireland     0.125  0.205
12  2014   PRGO              Ireland     0.059  0.033
13  2015   PRGO              Ireland     0.032  0.014
14  2016   PRGO              Ireland    -0.760 -0.498
15  2017   PRGO              Ireland     0.024  0.020
16  2018   PRGO              Ireland     0.028  0.022
17  2011    PFE      New York; U.S.A     0.164  0.114
18  2012    PFE      New York; U.S.A     0.267  0.179
19  2013    PFE      New York; U.S.A     0.427  0.279
20  2014    PFE      New York; U.S.A     0.184  0.120
21  2015    PFE      New York; U.S.A     0.142  0.105
22  2016    PFE      New York; U.S.A     0.137  0.116
23  2017    PFE      New York; U.S.A     0.406  0.342
24  2018    PFE      New York; U.S.A     0.208  0.162
25  2011    MYL       United Kingdom     0.088  0.146
26  2012    MYL       United Kingdom     0.094  0.184
27  2013    MYL       United Kingdom     0.090  0.209
28  2014    MYL       United Kingdom     0.120  0.283
29  2015    MYL       United Kingdom     0.090  0.089
30  2016    MYL       United Kingdom     0.043  0.044
31  2017    MYL       United Kingdom     0.058  0.054
32  2018    MYL       United Kingdom     0.031  0.028
33  2011    MRK    New Jersey; U.S.A     0.131  0.114
34  2012    MRK    New Jersey; U.S.A     0.130  0.113
35  2013    MRK    New Jersey; U.S.A     0.100  0.089
36  2014    MRK    New Jersey; U.S.A     0.282  0.248
37  2015    MRK    New Jersey; U.S.A     0.112  0.096
38  2016    MRK    New Jersey; U.S.A     0.098  0.092
39  2017    MRK    New Jersey; U.S.A     0.060  0.063
40  2018    MRK    New Jersey; U.S.A     0.147  0.199
41  2011    LLY       Indiana; U.S.A     0.179  0.306
42  2012    LLY       Indiana; U.S.A     0.181  0.273
43  2013    LLY       Indiana; U.S.A     0.203  0.290
44  2014    LLY       Indiana; U.S.A     0.122  0.138
45  2015    LLY       Indiana; U.S.A     0.121  0.162
46  2016    LLY       Indiana; U.S.A     0.129  0.185
47  2017    LLY       Indiana; U.S.A    -0.009 -0.015
48  2018    LLY       Indiana; U.S.A     0.132  0.264
49  2011    JNJ    New Jersey; U.S.A     0.149  0.161
50  2012    JNJ    New Jersey; U.S.A     0.161  0.173
51  2013    JNJ    New Jersey; U.S.A     0.194  0.197
52  2014    JNJ    New Jersey; U.S.A     0.220  0.217
53  2015    JNJ    New Jersey; U.S.A     0.220  0.219
54  2016    JNJ    New Jersey; U.S.A     0.230  0.229
55  2017    JNJ    New Jersey; U.S.A     0.017  0.019
56  2018    JNJ    New Jersey; U.S.A     0.188  0.244
57  2011   GILD    California; U.S.A     0.334  0.451
58  2012   GILD    California; U.S.A     0.267  0.312
59  2013   GILD    California; U.S.A     0.275  0.283
60  2014   GILD    California; U.S.A     0.486  0.828
61  2015   GILD    California; U.S.A     0.555  1.043
62  2016   GILD    California; U.S.A     0.444  0.835
63  2017   GILD    California; U.S.A     0.177  0.209
64  2018   GILD    California; U.S.A     0.247  0.252
65  2011    BMY      New York; U.S.A     0.175  0.229
66  2012    BMY      New York; U.S.A     0.111  0.131
67  2013    BMY      New York; U.S.A     0.156  0.177
68  2014    BMY      New York; U.S.A     0.126  0.132
69  2015    BMY      New York; U.S.A     0.095  0.104
70  2016    BMY      New York; U.S.A     0.229  0.292
71  2017    BMY      New York; U.S.A     0.048  0.072
72  2018    BMY      New York; U.S.A     0.218  0.373
73  2011   BIIB Massachusetts; U.S.A     0.245  0.204
74  2012   BIIB Massachusetts; U.S.A     0.250  0.211
75  2013   BIIB Massachusetts; U.S.A     0.269  0.233
76  2014   BIIB Massachusetts; U.S.A     0.302  0.294
77  2015   BIIB Massachusetts; U.S.A     0.330  0.321
78  2016   BIIB Massachusetts; U.S.A     0.323  0.322
79  2017   BIIB Massachusetts; U.S.A     0.207  0.209
80  2018   BIIB Massachusetts; U.S.A     0.329  0.334
81  2011   AMGN    California; U.S.A     0.236  0.158
82  2012   AMGN    California; U.S.A     0.252  0.225
83  2013   AMGN    California; U.S.A     0.272  0.242
84  2014   AMGN    California; U.S.A     0.257  0.210
85  2015   AMGN    California; U.S.A     0.320  0.252
86  2016   AMGN    California; U.S.A     0.336  0.259
87  2017   AMGN    California; U.S.A     0.087  0.066
88  2018   AMGN    California; U.S.A     0.353  0.585
89  2011    AGN              Ireland     0.057  0.075
90  2012    AGN              Ireland     0.016  0.026
91  2013    AGN              Ireland    -0.288 -0.147
92  2014    AGN              Ireland    -0.349 -0.085
93  2015    AGN              Ireland     0.290  0.050
94  2016    AGN              Ireland     1.009  0.184
95  2017    AGN              Ireland    -0.276 -0.060
96  2018    AGN              Ireland    -0.326 -0.074
97  2011   ABBV      Illinois; U.S.A     0.197  0.248
98  2012   ABBV      Illinois; U.S.A     0.287  0.690
99  2013   ABBV      Illinois; U.S.A     0.220  1.132
100 2014   ABBV      Illinois; U.S.A     0.089  0.435
101 2015   ABBV      Illinois; U.S.A     0.225  1.311
102 2016   ABBV      Illinois; U.S.A     0.232  1.113
103 2017   ABBV      Illinois; U.S.A     0.188  0.932
104 2018   ABBV      Illinois; U.S.A     0.174 -2.033

Question: Filter and select

Use inputs from quiz question filter and select and replace SEE QUIZ with inputs from quiz and replacing the ??? in the code

drug_cos %>% 
  filter(ticker %in% c("PFE", "MRK", "BMY")) %>% 
  select(ticker,year, ros)
   ticker year   ros
1     PFE 2011 0.223
2     PFE 2012 0.307
3     PFE 2013 0.510
4     PFE 2014 0.247
5     PFE 2015 0.183
6     PFE 2016 0.158
7     PFE 2017 0.233
8     PFE 2018 0.221
9     MRK 2011 0.150
10    MRK 2012 0.182
11    MRK 2013 0.123
12    MRK 2014 0.409
13    MRK 2015 0.136
14    MRK 2016 0.117
15    MRK 2017 0.162
16    MRK 2018 0.206
17    BMY 2011 0.256
18    BMY 2012 0.102
19    BMY 2013 0.175
20    BMY 2014 0.148
21    BMY 2015 0.121
22    BMY 2016 0.302
23    BMY 2017 0.249
24    BMY 2018 0.263

Question: Rename

drug_cos %>% 
  filter(ticker %in% c("ABBV", "BMY")) %>% 
  select(ticker,netmargin, return_on_equity = roe)
   ticker netmargin return_on_equity
1     BMY     0.175            0.229
2     BMY     0.111            0.131
3     BMY     0.156            0.177
4     BMY     0.126            0.132
5     BMY     0.095            0.104
6     BMY     0.229            0.292
7     BMY     0.048            0.072
8     BMY     0.218            0.373
9    ABBV     0.197            0.248
10   ABBV     0.287            0.690
11   ABBV     0.220            1.132
12   ABBV     0.089            0.435
13   ABBV     0.225            1.311
14   ABBV     0.232            1.113
15   ABBV     0.188            0.932
16   ABBV     0.174           -2.033
  1. select ranges of colums`
drug_cos %>% select(ebitdamargin:netmargin)
    ebitdamargin grossmargin netmargin
1          0.149       0.610     0.058
2          0.217       0.640     0.101
3          0.222       0.634     0.111
4          0.238       0.641     0.122
5          0.182       0.635     0.071
6          0.335       0.659     0.168
7          0.366       0.666     0.163
8          0.379       0.672     0.245
9          0.216       0.343     0.123
10         0.226       0.345     0.127
11         0.236       0.362     0.125
12         0.157       0.371     0.059
13         0.157       0.389     0.032
14        -0.791       0.389    -0.760
15         0.181       0.400     0.024
16         0.178       0.387     0.028
17         0.371       0.795     0.164
18         0.447       0.820     0.267
19         0.634       0.814     0.427
20         0.359       0.807     0.184
21         0.289       0.803     0.142
22         0.267       0.767     0.137
23         0.353       0.786     0.406
24         0.340       0.790     0.208
25         0.245       0.418     0.088
26         0.244       0.428     0.094
27         0.228       0.440     0.090
28         0.242       0.457     0.120
29         0.243       0.447     0.090
30         0.190       0.424     0.043
31         0.272       0.402     0.058
32         0.258       0.350     0.031
33         0.305       0.649     0.131
34         0.330       0.652     0.130
35         0.282       0.615     0.100
36         0.567       0.603     0.282
37         0.298       0.622     0.112
38         0.254       0.648     0.098
39         0.278       0.678     0.060
40         0.313       0.681     0.147
41         0.277       0.791     0.179
42         0.304       0.788     0.181
43         0.317       0.788     0.203
44         0.223       0.749     0.122
45         0.211       0.748     0.121
46         0.230       0.731     0.129
47         0.165       0.731    -0.009
48         0.220       0.738     0.132
49         0.247       0.687     0.149
50         0.272       0.678     0.161
51         0.281       0.687     0.194
52         0.336       0.694     0.220
53         0.335       0.693     0.220
54         0.338       0.697     0.230
55         0.317       0.667     0.017
56         0.318       0.668     0.188
57         0.498       0.747     0.334
58         0.440       0.745     0.267
59         0.435       0.745     0.275
60         0.657       0.848     0.486
61         0.718       0.877     0.555
62         0.633       0.860     0.444
63         0.610       0.833     0.177
64         0.465       0.781     0.247
65         0.285       0.736     0.175
66         0.141       0.738     0.111
67         0.222       0.718     0.156
68         0.178       0.752     0.126
69         0.144       0.764     0.095
70         0.322       0.744     0.229
71         0.286       0.707     0.048
72         0.292       0.710     0.218
73         0.404       0.908     0.245
74         0.402       0.901     0.250
75         0.432       0.876     0.269
76         0.475       0.879     0.302
77         0.493       0.885     0.330
78         0.491       0.871     0.323
79         0.495       0.867     0.207
80         0.511       0.865     0.329
81         0.374       0.826     0.236
82         0.414       0.815     0.252
83         0.405       0.821     0.272
84         0.436       0.780     0.257
85         0.516       0.805     0.320
86         0.545       0.819     0.336
87         0.563       0.822     0.087
88         0.543       0.827     0.353
89         0.213       0.440     0.057
90         0.158       0.426     0.016
91         0.146       0.368    -0.288
92         0.234       0.635    -0.349
93         0.749       0.783     0.290
94         1.441       0.872     1.009
95        -0.146       0.864    -0.276
96         0.050       0.861    -0.326
97         0.282       0.734     0.197
98         0.379       0.755     0.287
99         0.346       0.756     0.220
100        0.178       0.778     0.089
101        0.357       0.803     0.225
102        0.392       0.773     0.232
103        0.363       0.750     0.188
104        0.247       0.764     0.174
drug_cos %>% 
  select(4:6)
    ebitdamargin grossmargin netmargin
1          0.149       0.610     0.058
2          0.217       0.640     0.101
3          0.222       0.634     0.111
4          0.238       0.641     0.122
5          0.182       0.635     0.071
6          0.335       0.659     0.168
7          0.366       0.666     0.163
8          0.379       0.672     0.245
9          0.216       0.343     0.123
10         0.226       0.345     0.127
11         0.236       0.362     0.125
12         0.157       0.371     0.059
13         0.157       0.389     0.032
14        -0.791       0.389    -0.760
15         0.181       0.400     0.024
16         0.178       0.387     0.028
17         0.371       0.795     0.164
18         0.447       0.820     0.267
19         0.634       0.814     0.427
20         0.359       0.807     0.184
21         0.289       0.803     0.142
22         0.267       0.767     0.137
23         0.353       0.786     0.406
24         0.340       0.790     0.208
25         0.245       0.418     0.088
26         0.244       0.428     0.094
27         0.228       0.440     0.090
28         0.242       0.457     0.120
29         0.243       0.447     0.090
30         0.190       0.424     0.043
31         0.272       0.402     0.058
32         0.258       0.350     0.031
33         0.305       0.649     0.131
34         0.330       0.652     0.130
35         0.282       0.615     0.100
36         0.567       0.603     0.282
37         0.298       0.622     0.112
38         0.254       0.648     0.098
39         0.278       0.678     0.060
40         0.313       0.681     0.147
41         0.277       0.791     0.179
42         0.304       0.788     0.181
43         0.317       0.788     0.203
44         0.223       0.749     0.122
45         0.211       0.748     0.121
46         0.230       0.731     0.129
47         0.165       0.731    -0.009
48         0.220       0.738     0.132
49         0.247       0.687     0.149
50         0.272       0.678     0.161
51         0.281       0.687     0.194
52         0.336       0.694     0.220
53         0.335       0.693     0.220
54         0.338       0.697     0.230
55         0.317       0.667     0.017
56         0.318       0.668     0.188
57         0.498       0.747     0.334
58         0.440       0.745     0.267
59         0.435       0.745     0.275
60         0.657       0.848     0.486
61         0.718       0.877     0.555
62         0.633       0.860     0.444
63         0.610       0.833     0.177
64         0.465       0.781     0.247
65         0.285       0.736     0.175
66         0.141       0.738     0.111
67         0.222       0.718     0.156
68         0.178       0.752     0.126
69         0.144       0.764     0.095
70         0.322       0.744     0.229
71         0.286       0.707     0.048
72         0.292       0.710     0.218
73         0.404       0.908     0.245
74         0.402       0.901     0.250
75         0.432       0.876     0.269
76         0.475       0.879     0.302
77         0.493       0.885     0.330
78         0.491       0.871     0.323
79         0.495       0.867     0.207
80         0.511       0.865     0.329
81         0.374       0.826     0.236
82         0.414       0.815     0.252
83         0.405       0.821     0.272
84         0.436       0.780     0.257
85         0.516       0.805     0.320
86         0.545       0.819     0.336
87         0.563       0.822     0.087
88         0.543       0.827     0.353
89         0.213       0.440     0.057
90         0.158       0.426     0.016
91         0.146       0.368    -0.288
92         0.234       0.635    -0.349
93         0.749       0.783     0.290
94         1.441       0.872     1.009
95        -0.146       0.864    -0.276
96         0.050       0.861    -0.326
97         0.282       0.734     0.197
98         0.379       0.755     0.287
99         0.346       0.756     0.220
100        0.178       0.778     0.089
101        0.357       0.803     0.225
102        0.392       0.773     0.232
103        0.363       0.750     0.188
104        0.247       0.764     0.174
  1. select helper functions
drug_cos %>% 
  select(ticker, contains("locat"))
    ticker             location
1      ZTS    New Jersey; U.S.A
2      ZTS    New Jersey; U.S.A
3      ZTS    New Jersey; U.S.A
4      ZTS    New Jersey; U.S.A
5      ZTS    New Jersey; U.S.A
6      ZTS    New Jersey; U.S.A
7      ZTS    New Jersey; U.S.A
8      ZTS    New Jersey; U.S.A
9     PRGO              Ireland
10    PRGO              Ireland
11    PRGO              Ireland
12    PRGO              Ireland
13    PRGO              Ireland
14    PRGO              Ireland
15    PRGO              Ireland
16    PRGO              Ireland
17     PFE      New York; U.S.A
18     PFE      New York; U.S.A
19     PFE      New York; U.S.A
20     PFE      New York; U.S.A
21     PFE      New York; U.S.A
22     PFE      New York; U.S.A
23     PFE      New York; U.S.A
24     PFE      New York; U.S.A
25     MYL       United Kingdom
26     MYL       United Kingdom
27     MYL       United Kingdom
28     MYL       United Kingdom
29     MYL       United Kingdom
30     MYL       United Kingdom
31     MYL       United Kingdom
32     MYL       United Kingdom
33     MRK    New Jersey; U.S.A
34     MRK    New Jersey; U.S.A
35     MRK    New Jersey; U.S.A
36     MRK    New Jersey; U.S.A
37     MRK    New Jersey; U.S.A
38     MRK    New Jersey; U.S.A
39     MRK    New Jersey; U.S.A
40     MRK    New Jersey; U.S.A
41     LLY       Indiana; U.S.A
42     LLY       Indiana; U.S.A
43     LLY       Indiana; U.S.A
44     LLY       Indiana; U.S.A
45     LLY       Indiana; U.S.A
46     LLY       Indiana; U.S.A
47     LLY       Indiana; U.S.A
48     LLY       Indiana; U.S.A
49     JNJ    New Jersey; U.S.A
50     JNJ    New Jersey; U.S.A
51     JNJ    New Jersey; U.S.A
52     JNJ    New Jersey; U.S.A
53     JNJ    New Jersey; U.S.A
54     JNJ    New Jersey; U.S.A
55     JNJ    New Jersey; U.S.A
56     JNJ    New Jersey; U.S.A
57    GILD    California; U.S.A
58    GILD    California; U.S.A
59    GILD    California; U.S.A
60    GILD    California; U.S.A
61    GILD    California; U.S.A
62    GILD    California; U.S.A
63    GILD    California; U.S.A
64    GILD    California; U.S.A
65     BMY      New York; U.S.A
66     BMY      New York; U.S.A
67     BMY      New York; U.S.A
68     BMY      New York; U.S.A
69     BMY      New York; U.S.A
70     BMY      New York; U.S.A
71     BMY      New York; U.S.A
72     BMY      New York; U.S.A
73    BIIB Massachusetts; U.S.A
74    BIIB Massachusetts; U.S.A
75    BIIB Massachusetts; U.S.A
76    BIIB Massachusetts; U.S.A
77    BIIB Massachusetts; U.S.A
78    BIIB Massachusetts; U.S.A
79    BIIB Massachusetts; U.S.A
80    BIIB Massachusetts; U.S.A
81    AMGN    California; U.S.A
82    AMGN    California; U.S.A
83    AMGN    California; U.S.A
84    AMGN    California; U.S.A
85    AMGN    California; U.S.A
86    AMGN    California; U.S.A
87    AMGN    California; U.S.A
88    AMGN    California; U.S.A
89     AGN              Ireland
90     AGN              Ireland
91     AGN              Ireland
92     AGN              Ireland
93     AGN              Ireland
94     AGN              Ireland
95     AGN              Ireland
96     AGN              Ireland
97    ABBV      Illinois; U.S.A
98    ABBV      Illinois; U.S.A
99    ABBV      Illinois; U.S.A
100   ABBV      Illinois; U.S.A
101   ABBV      Illinois; U.S.A
102   ABBV      Illinois; U.S.A
103   ABBV      Illinois; U.S.A
104   ABBV      Illinois; U.S.A
drug_cos %>% 
  select(ticker, starts_with("r"))
    ticker    ros    roe
1      ZTS  0.101  0.069
2      ZTS  0.171  0.113
3      ZTS  0.176  0.612
4      ZTS  0.195  0.465
5      ZTS  0.140  0.285
6      ZTS  0.286  0.587
7      ZTS  0.321  0.488
8      ZTS  0.326  0.694
9     PRGO  0.178  0.248
10    PRGO  0.183  0.236
11    PRGO  0.190  0.205
12    PRGO  0.104  0.033
13    PRGO  0.096  0.014
14    PRGO -0.877 -0.498
15    PRGO  0.091  0.020
16    PRGO  0.088  0.022
17     PFE  0.223  0.114
18     PFE  0.307  0.179
19     PFE  0.510  0.279
20     PFE  0.247  0.120
21     PFE  0.183  0.105
22     PFE  0.158  0.116
23     PFE  0.233  0.342
24     PFE  0.221  0.162
25     MYL  0.161  0.146
26     MYL  0.163  0.184
27     MYL  0.153  0.209
28     MYL  0.169  0.283
29     MYL  0.133  0.089
30     MYL  0.052  0.044
31     MYL  0.121  0.054
32     MYL  0.074  0.028
33     MRK  0.150  0.114
34     MRK  0.182  0.113
35     MRK  0.123  0.089
36     MRK  0.409  0.248
37     MRK  0.136  0.096
38     MRK  0.117  0.092
39     MRK  0.162  0.063
40     MRK  0.206  0.199
41     LLY  0.220  0.306
42     LLY  0.239  0.273
43     LLY  0.255  0.290
44     LLY  0.153  0.138
45     LLY  0.140  0.162
46     LLY  0.159  0.185
47     LLY  0.096 -0.015
48     LLY  0.155  0.264
49     JNJ  0.199  0.161
50     JNJ  0.218  0.173
51     JNJ  0.224  0.197
52     JNJ  0.284  0.217
53     JNJ  0.282  0.219
54     JNJ  0.286  0.229
55     JNJ  0.243  0.019
56     JNJ  0.233  0.244
57    GILD  0.462  0.451
58    GILD  0.411  0.312
59    GILD  0.405  0.283
60    GILD  0.615  0.828
61    GILD  0.685  1.043
62    GILD  0.595  0.835
63    GILD  0.560  0.209
64    GILD  0.401  0.252
65     BMY  0.256  0.229
66     BMY  0.102  0.131
67     BMY  0.175  0.177
68     BMY  0.148  0.132
69     BMY  0.121  0.104
70     BMY  0.302  0.292
71     BMY  0.249  0.072
72     BMY  0.263  0.373
73    BIIB  0.333  0.204
74    BIIB  0.335  0.211
75    BIIB  0.355  0.233
76    BIIB  0.404  0.294
77    BIIB  0.437  0.321
78    BIIB  0.431  0.322
79    BIIB  0.407  0.209
80    BIIB  0.435  0.334
81    AMGN  0.305  0.158
82    AMGN  0.351  0.225
83    AMGN  0.337  0.242
84    AMGN  0.332  0.210
85    AMGN  0.419  0.252
86    AMGN  0.453  0.259
87    AMGN  0.477  0.066
88    AMGN  0.461  0.585
89     AGN  0.115  0.075
90     AGN  0.060  0.026
91     AGN -0.256 -0.147
92     AGN -0.370 -0.085
93     AGN  0.276  0.050
94     AGN  0.986  0.184
95     AGN -0.609 -0.060
96     AGN -0.377 -0.074
97    ABBV  0.209  0.248
98    ABBV  0.316  0.690
99    ABBV  0.299  1.132
100   ABBV  0.138  0.435
101   ABBV  0.321  1.311
102   ABBV  0.345  1.113
103   ABBV  0.309  0.932
104   ABBV  0.194 -2.033
drug_cos %>% 
  select(year, ends_with("margin"))
    year ebitdamargin grossmargin netmargin
1   2011        0.149       0.610     0.058
2   2012        0.217       0.640     0.101
3   2013        0.222       0.634     0.111
4   2014        0.238       0.641     0.122
5   2015        0.182       0.635     0.071
6   2016        0.335       0.659     0.168
7   2017        0.366       0.666     0.163
8   2018        0.379       0.672     0.245
9   2011        0.216       0.343     0.123
10  2012        0.226       0.345     0.127
11  2013        0.236       0.362     0.125
12  2014        0.157       0.371     0.059
13  2015        0.157       0.389     0.032
14  2016       -0.791       0.389    -0.760
15  2017        0.181       0.400     0.024
16  2018        0.178       0.387     0.028
17  2011        0.371       0.795     0.164
18  2012        0.447       0.820     0.267
19  2013        0.634       0.814     0.427
20  2014        0.359       0.807     0.184
21  2015        0.289       0.803     0.142
22  2016        0.267       0.767     0.137
23  2017        0.353       0.786     0.406
24  2018        0.340       0.790     0.208
25  2011        0.245       0.418     0.088
26  2012        0.244       0.428     0.094
27  2013        0.228       0.440     0.090
28  2014        0.242       0.457     0.120
29  2015        0.243       0.447     0.090
30  2016        0.190       0.424     0.043
31  2017        0.272       0.402     0.058
32  2018        0.258       0.350     0.031
33  2011        0.305       0.649     0.131
34  2012        0.330       0.652     0.130
35  2013        0.282       0.615     0.100
36  2014        0.567       0.603     0.282
37  2015        0.298       0.622     0.112
38  2016        0.254       0.648     0.098
39  2017        0.278       0.678     0.060
40  2018        0.313       0.681     0.147
41  2011        0.277       0.791     0.179
42  2012        0.304       0.788     0.181
43  2013        0.317       0.788     0.203
44  2014        0.223       0.749     0.122
45  2015        0.211       0.748     0.121
46  2016        0.230       0.731     0.129
47  2017        0.165       0.731    -0.009
48  2018        0.220       0.738     0.132
49  2011        0.247       0.687     0.149
50  2012        0.272       0.678     0.161
51  2013        0.281       0.687     0.194
52  2014        0.336       0.694     0.220
53  2015        0.335       0.693     0.220
54  2016        0.338       0.697     0.230
55  2017        0.317       0.667     0.017
56  2018        0.318       0.668     0.188
57  2011        0.498       0.747     0.334
58  2012        0.440       0.745     0.267
59  2013        0.435       0.745     0.275
60  2014        0.657       0.848     0.486
61  2015        0.718       0.877     0.555
62  2016        0.633       0.860     0.444
63  2017        0.610       0.833     0.177
64  2018        0.465       0.781     0.247
65  2011        0.285       0.736     0.175
66  2012        0.141       0.738     0.111
67  2013        0.222       0.718     0.156
68  2014        0.178       0.752     0.126
69  2015        0.144       0.764     0.095
70  2016        0.322       0.744     0.229
71  2017        0.286       0.707     0.048
72  2018        0.292       0.710     0.218
73  2011        0.404       0.908     0.245
74  2012        0.402       0.901     0.250
75  2013        0.432       0.876     0.269
76  2014        0.475       0.879     0.302
77  2015        0.493       0.885     0.330
78  2016        0.491       0.871     0.323
79  2017        0.495       0.867     0.207
80  2018        0.511       0.865     0.329
81  2011        0.374       0.826     0.236
82  2012        0.414       0.815     0.252
83  2013        0.405       0.821     0.272
84  2014        0.436       0.780     0.257
85  2015        0.516       0.805     0.320
86  2016        0.545       0.819     0.336
87  2017        0.563       0.822     0.087
88  2018        0.543       0.827     0.353
89  2011        0.213       0.440     0.057
90  2012        0.158       0.426     0.016
91  2013        0.146       0.368    -0.288
92  2014        0.234       0.635    -0.349
93  2015        0.749       0.783     0.290
94  2016        1.441       0.872     1.009
95  2017       -0.146       0.864    -0.276
96  2018        0.050       0.861    -0.326
97  2011        0.282       0.734     0.197
98  2012        0.379       0.755     0.287
99  2013        0.346       0.756     0.220
100 2014        0.178       0.778     0.089
101 2015        0.357       0.803     0.225
102 2016        0.392       0.773     0.232
103 2017        0.363       0.750     0.188
104 2018        0.247       0.764     0.174

Use group_by to set up data for operations by group

drug_cos %>% 
  group_by(ticker)
# A tibble: 104 × 9
# Groups:   ticker [13]
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoetis Inc New Jer…        0.149       0.61      0.058 0.101
 2 ZTS    Zoetis Inc New Jer…        0.217       0.64      0.101 0.171
 3 ZTS    Zoetis Inc New Jer…        0.222       0.634     0.111 0.176
 4 ZTS    Zoetis Inc New Jer…        0.238       0.641     0.122 0.195
 5 ZTS    Zoetis Inc New Jer…        0.182       0.635     0.071 0.14 
 6 ZTS    Zoetis Inc New Jer…        0.335       0.659     0.168 0.286
 7 ZTS    Zoetis Inc New Jer…        0.366       0.666     0.163 0.321
 8 ZTS    Zoetis Inc New Jer…        0.379       0.672     0.245 0.326
 9 PRGO   PERRIGO C… Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERRIGO C… Ireland         0.226       0.345     0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <int>
drug_cos %>% 
  group_by(year)
# A tibble: 104 × 9
# Groups:   year [8]
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoetis Inc New Jer…        0.149       0.61      0.058 0.101
 2 ZTS    Zoetis Inc New Jer…        0.217       0.64      0.101 0.171
 3 ZTS    Zoetis Inc New Jer…        0.222       0.634     0.111 0.176
 4 ZTS    Zoetis Inc New Jer…        0.238       0.641     0.122 0.195
 5 ZTS    Zoetis Inc New Jer…        0.182       0.635     0.071 0.14 
 6 ZTS    Zoetis Inc New Jer…        0.335       0.659     0.168 0.286
 7 ZTS    Zoetis Inc New Jer…        0.366       0.666     0.163 0.321
 8 ZTS    Zoetis Inc New Jer…        0.379       0.672     0.245 0.326
 9 PRGO   PERRIGO C… Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERRIGO C… Ireland         0.226       0.345     0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <int>

Use summarize to calculate summary statistics

  1. Maximum roe for all companies
drug_cos %>% 
  summarize (max_roe = max(roe))
  max_roe
1   1.311
drug_cos %>% 
  group_by(year) %>% 
  summarize(max_roe = max(roe))
# A tibble: 8 × 2
   year max_roe
  <int>   <dbl>
1  2011   0.451
2  2012   0.69 
3  2013   1.13 
4  2014   0.828
5  2015   1.31 
6  2016   1.11 
7  2017   0.932
8  2018   0.694
drug_cos %>% 
  group_by(ticker) %>% 
  summarize(max_roe = max(roe))
# A tibble: 13 × 2
   ticker max_roe
   <chr>    <dbl>
 1 ABBV     1.31 
 2 AGN      0.184
 3 AMGN     0.585
 4 BIIB     0.334
 5 BMY      0.373
 6 GILD     1.04 
 7 JNJ      0.244
 8 LLY      0.306
 9 MRK      0.248
10 MYL      0.283
11 PFE      0.342
12 PRGO     0.248
13 ZTS      0.694

Question: summarize

** Mean for year**

drug_cos %>% 
  group_by(year) %>% 
  summarize(mean_ebitdamargin = mean(ebitdamargin)) %>% 
filter(year == 2011)
# A tibble: 1 × 2
   year mean_ebitdamargin
  <int>             <dbl>
1  2011             0.297

The mean ebitdamargin for 2011 is .2973846 or 29.73%

Median for year

drug_cos %>% 
group_by(year) %>% 
  summarize(median_ebitdamargin = median(ebitdamargin)) %>% 
filter(year == 2011)
# A tibble: 1 × 2
   year median_ebitdamargin
  <int>               <dbl>
1  2011               0.282

The median ebitdamargin for 2011 is: 0.282 or 28.2 %

  1. Pick a ratio and a year and compare the companies
drug_cos %>%
  filter(year == 2011 ) %>% 
  ggplot(aes(x = netmargin, y =reorder(name, netmargin))) +
  geom_col() +
  scale_x_continuous(labels = scales ::percent) +
  labs(title = "Comparison of net margin",
       subtitle = "for drug companies during 2011",
       x = NULL, y =NULL) +
  theme_classic()

  1. Pick a company and a ratio and compare the ratio over time.
drug_cos %>% 
   filter(ticker == "JNJ" ) %>% 
  ggplot(aes(x = year, y = netmargin)) +
  geom_col() +
  scale_y_continuous(labels = scales ::percent) +
  labs(title = "Comparison of net margin",
       subtitle = "for Johnson & Johnson  from 2011 to 2018",
       x = NULL, y =NULL) +
  theme_classic()
ggsave(filename = "preview.png",
       path = here::here("_posts", "2022-02-25-data-manipulation"))